| 翻訳と辞書 | Relationships among probability distributions| Relationships among probability distributions  : ウィキペディア英語版 | 
 In probability theory and statistics, there are several relationships among probability distributions. These relations can be categorized in the following groups:
 *One distribution is a special case of another with a broader parameter space
 *Transforms (function of a random variable);
 *Combinations (function of several variables);
 *Approximation (limit) relationships;
 *Compound relationships (useful for Bayesian inference);
 *Duality;
 *Conjugate priors.
 ==Special case of distribution parametrization==
 
 * A binomial (n, p) random variable with n  = 1, is a Bernoulli (p) random variable.
 * A negative binomial distribution with r = 1 is a geometric distribution.
 * A gamma distribution with shape parameter α = 1 and scale parameter β is an exponential (β) distribution.
 * A gamma (α, β) random variable with α = ν/2 and β = 2, is a chi-squared random variable with ν degrees of freedom.
 * A chi-squared distribution with 2 degrees of freedom is an exponential distribution with mean 2 and vice versa.
 * A Weibull (1, β) random variable is an exponential random variable with mean β.
 * A beta random variable with parameters α = β = 1 is a uniform random variable.
 * A beta-binomial (n, 1, 1) random variable is a discrete uniform random variable over the values 0 ... n.
 * A random variable with a t distribution with one degree of freedom is a Cauchy(0,1) random variable.
 
 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』
 ■ウィキペディアで「Relationships among probability distributions」の詳細全文を読む
 
 
 
 スポンサード リンク
 
 | 翻訳と辞書 : 翻訳のためのインターネットリソース | 
 | Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
 
 | 
 |